De-SAG: On the De-anonymization of Structure-Attribute Graph Data
نویسندگان
چکیده
In this paper, we study the impacts of non-Personal Identifiable Information (non-PII) on the privacy of graph data with attribute information (e.g., social networks data with users’ profiles (attributes)), namely Structure-Attribute Graph (SAG) data, both theoretically and empirically. Our main contributions are two-fold: (i) we conduct the first attribute-based anonymity analysis for SAG data under both preliminary and general models. By careful quantification, we obtain the explicit correlation between the graph anonymity and the attribute information. We also validate our analysis through numerical and real world data-based evaluations and the results indicate that the non-PII can also lead to significant anonymity loss; and (ii) according to our theoretical analysis, we propose a new de-anonymization framework for SAG data, namely De-SAG, which takes into account both the graph structure and the attribute information to the best of our knowledge. By extensive experiments, we demonstrate that De-SAG can significantly improve the performance of state-of-the-art graph de-anonymization attacks. Our attribute-based anonymity analysis and de-anonymization framework are expected to provide data owners and researchers a more complete understanding on the privacy vulnerability of graph data, and thus shed light on future graph anonymization and de-anonymization research.
منابع مشابه
An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملHow to Quantify Graph De-anonymization Risks
An increasing amount of data are becoming publicly available over the Internet. These data are released after applying some anonymization techniques. Recently, researchers have paid significant attention to analyzing the risks of publishing privacy-sensitive data. Even if data anonymization techniques were applied to protect privacy-sensitive data, several de-anonymization attacks have been pro...
متن کاملSecGraph: A Uniform and Open-source Evaluation System for Graph Data Anonymization and De-anonymization
In this paper, we analyze and systematize the state-ofthe-art graph data privacy and utility techniques. Specifically, we propose and develop SecGraph (available at [1]), a uniform and open-source Secure Graph data sharing/publishing system. In SecGraph, we systematically study, implement, and evaluate 11 graph data anonymization algorithms, 19 data utility metrics, and 15 modern Structure-base...
متن کاملSocial Network De-Anonymization and Privacy Inference with Knowledge Graph Model
Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کامل